skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2027
  2. Free, publicly-accessible full text available January 11, 2027
  3. Free, publicly-accessible full text available December 31, 2026
  4. Abstract In order to better understand manifold neural networks (MNNs), we introduce Manifold Filter-Combine Networks (MFCNs). Our filter-combine framework parallels the popular aggregate-combine paradigm for graph neural networks (GNNs) and naturally suggests many interesting families of MNNs which can be interpreted as manifold analogues of various popular GNNs. We propose a method for implementing MFCNs on high-dimensional point clouds that relies on approximating an underlying manifold by a sparse graph. We then prove that our method is consistent in the sense that it converges to a continuum limit as the number of data points tends to infinity, and we numerically demonstrate its effectiveness on real-world and synthetic data sets. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. Free, publicly-accessible full text available December 1, 2026
  6. This paper examines a return to the thick space of the masonry wall. The wall is where a building embraces its context and where humanity can physically experience this nexus. Contemporary technologies applied to masonry construction offer a return to both tactile solidity and the space of interaction between a building and its users. Precedents from Catalan vernacular to Herzog & de Meuron will be contrasted to offer a way of thinking through the spatial potential created through the modularity and specificity of blocks. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  7. Staphylococcus aureus is the leading cause of skin infections in the U.S., and its rapid evolution and resistance to antibiotics create a barrier to effective treatment. In this study, we engineered a composite membrane with bacterial cellulose and carbon nanotubes (BC-CNT) as an electroactive dressing to rapidly eradicate vancomycin-intermediate S. aureus. Nonpathogenic Komagataeibacter sucrofermentans produced the BC membrane at an air-liquid interface. Then, carboxyl-functionalized multi-walled CNTs were integrated into decellularized BC to create stable and electrically conductive BC-CNT dressings. The electric potential and ionic flux across BC-CNT were modeled and standardized via chronoamperometry for experimental validation. We found that treatment with electroactive BC-CNT increases S. aureus sensitivity to vancomycin and prevents macro-scale biofilm formation. The bactericidal efficacy of the composite membrane is consistent with electrochemical stress caused by voltage mediated with BC-CNT. After a single hour of combinatorial electrical and drug treatment, biofilm-forming capacity was inhibited by nearly 92 %. These results advance applications of electrochemistry in medicine and create a new direction to overcome S. aureus infections on skin and soft tissues. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  8. Free, publicly-accessible full text available October 1, 2026
  9. Free, publicly-accessible full text available October 1, 2026
  10. Free, publicly-accessible full text available September 12, 2026